
m __Carnegie-Mellon University

,,~- Software Engineering Institute

(Dx Introduction to
* _ Software Verification and

_--- Validation
Curricuum Module SEI-CM-13-1.1 DrIc

JUN 0 4 i

fo j .* r i

"A,1

91004

//

//

7

"x \ - forp lc"

S/ / Ds\,b "\U~R

--" "- -/ -" ",

"91~ -00847'""
/ hh l1\UhiA 1\

.... , lllll~lllllll~llllll I a o/

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIf'ICATION OF T041S PAGE

REPORT DOCUMENTATION PAGE
to REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARK(INGS

UNCLASSI FIED NONE
2.. SECURITY CLASSIFICATION AUTHORITY _3. 0151 Ri BUT IONIAVAIL.ASILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIF ICA TION 0OOYWNGRAOING SCHEOULE DISTRIBUTION UNLIMITED

NI/A
APERfLORMING ORGANIZATION REPORT NUMSFA(SI S. MONITORING ORGANIZATION REPORT NuMABEAISI

SEI-CM-13-1. 1.

6G. NAME OF PERFORMING ORGANIZATION tSb OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZ-ATION
I Jidpplicablf)

SOFTWARE ENGINEERING INST. SE I SEI JOINT PROGRAM OFFICE

6c. ADDRESS (City. Staff end 71IP Code) 7b. A 0ORAEFSS lCity. S toat. and Z IP Code, p

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

64. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUME4tN* 11ENTIFIC-ATION NUMBER
ORGANIZATION 11f applicable)

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003

I~ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. _______

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. NO. Na. NO.

I I TITLE (Include Security C~iaicaistontNANI I

itroduction to Software Verification and Validation ________________

12. PERSONAL AUTI4ORIS)

James S. Collofe lor% 7 Rap nvn-Qt
13& TYPE Of REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Me.. Day) 15. PAGIE COUNT

FTROM _IFROM_ TO December 1988 2
14. SUPPLEMENTARY NOTATION

1?. COSATI COCES IS& SUOJECT TERMS ICo~n i On mw~ri of neciraary, and idemitify by block Ruinbein

FIELD GROUP Sue. GR. software verification software technical review
software validation software testing

19. ABST MACT iConenua on ovve',a it nfeciuany @Ad Identify by block muumberl

Software verification and validation techniques are introduced and their applicability
discussed. Approaches to integrating these techinques into comprehensive verification
and validation plans are also addressed. This curriculum module provides an overview
needed to understand in-depth curriculum modules in the verification and validation
area.

20. DISTRI SUTION/AVAILAOILITY OF ABSTRACT 21. ASSTRACT SECURITY CLASSIFICATION

UP4CLASSIPIGOIUNLIMITED JQSAME AS APT. 03 TIC USERS (a UNCLASSIFIED, UNLIMITED DISTRIBUTION

[22.. NAME OF RSPONSILE INDIVIDUAL 22b6 TELIEPHONE.NUMER 22c. OFFICE SYVMOL

JOHN S. HERMAN. (qnr.. IT.qAF (Include Arve Code# ESD/AVS

Introduction to
Software Verification and Validation

SEI Curriculum Module SEI-CM-13-1.1

December 1988

James S. Collofello I BY
Arizona State University iP i S, L, t I

, A!e~<t~ te
A sfl 'rt)/I I

1 ! t S.a t

: Carnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

0

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF

, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1988 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Ann: FDRA, Cameron Atatio, Alexandria. VA 22304-6145.
Copies of this document are also avaibble through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Introduction to
Software Verification and Validation

Foreword Contents
SEI curriculum modules document and explicate software Capsule Description 1
engineering topics. They are intended to be useful in a Philosophy 1
variety of situations--in the preparation of courses, in the
planning of individual lectures, in the design of curricula, Objectives 1
and in professional self-study. Topics do not exist in Prerequisite Knowledge 2
isolation, however, and the question inevitably arises how Module Content
one module is related to another. Because modules are
written by different authors at different times, the answer Outline 3
could easily be "not at all." In a young field struggling to Annotated Outline 3
define itself, this would be an unfortunate situation.

The SEI deliberately employs a number of mechanisms to gosi 14
achieve compatible points of view across curriculum mod- Teaching Considerations 16
ules and to fill the content gaps between them. Modules Suggested Schedules 16
such as Introduction to Sqware Verifcation and Valida- Exercises and Worked Examples 16
tion is one of the most important devices. In this latest
revision, Professor Collofello has more modules to inte- Bibliography 17
grate into a coherent picture than when we released his
first draft mor than a year ago-modules on quality as-
surance, unit testing, technical reviews, and formal verifi-
cation, as well as less directly related modules on specifi-
cation, requirements definition, and design. We believe
you will find this curriculum module interesting and use-
ful, both in its own right and by virtue of the under-
standing of other modules that it facilitates.

Lionel E. Deimel
Senior Computer Scientist, SEI

SEI-CM-13-1.1

Introduction to Software Verification and Validation
Module Revision History

Version 1.1 (Deember 1968) General revision
Approved for publication

~Verion 1.0 (October 1987) Draft for public review

iv SEI-CM-13-1 .1

Introduction to
Software Verification and Validation

Capsule Description is available in the curriculum module Unit Testing
and Analysis [MoreII88]. An additional module is

Software verification and validation techniques are planned addressing integration and system testing is-
introduced and their applicability discussed. Ap- sues. With regard to the other V&V approaches, in-
proaches to integrating these techniques into com- depth modules are currently available on technical
prehensive verification and validation plans are also review techniques (The Software Technical Review
addressed. This curriculum module provides an Process [Collofello87]) and proof of correctness
overview needed to understand in-depth curriculum (Formal Verification of Programs [Berztiss88]).
modules in the verification and validation area. This module also addresses planning considerations

for V&V processes, including the selection and inte-
gration of V&V techniques throughout the software
evolution process.

* Philosophy

This module provides a framework for understand-
ing the application of software verification and Objectives
validation (V&V) processes throughout the software
evolution process. Typical products of this process This module and its subordinate, in-depth modules,
are identified, along with their possible V&V objec- is intended to support the the goal of preparing pro-
tives. The V&V process consists of numerous tech- fessional software engineering students to analyze
niques and tools, often used in combination with one the V&V objectives and concerns of a particular
another. Due to the large number of V&V ap- project, examine the project's constraints, plan a
proaches in use, this module cannot address every comprehensive V&V strategy that includes the se-
technique. Instead, it will analyze five categories of lection of techniques, track the progress of the V&V
V&V approaches. These are: activity, and assess the effectiveness of the tech-

" technical reviews, niques used and that of the overall V&V plan. Typi-
" software testing, cally, the educational objectives of the software en-

gineering educator teaching V&V topics will be
" proof of correctness (program verifica- more modest.

tion), Possible objectives for the material treated in this
* simulation and prototyping, and curriculum module are given below.

requirements tracing. Ie student will be able to
For each category, some representative techniques
will be identified and assessed. Since the traditional Knowledge
focus of software V&V activity has been software * Define the terminology commonly util-
testing, this category encompasses by far the largest ized in the verification and validation
number of techniques. Thus, in this module, the area.
software testing category will be further refined to Identify representative techniques for the
expose the major testing techniques. Further depth five categories of V&V approaches.of coverage of techniques applicable to unit testing

SEI-CM-13-1.1 1

Introduction to Software Verification and Validation

Comprehension Prerequisite Knowledge
e Explain the theoretical and practical

limitations of V&V approaches. This module assumes that students have had experi- '
* Describe the V&V objectives for typical ence as members of a team working on a substantial

products generated by the software software development project. This experience is
evolution process. essential to understanding the importance of soft-

ware review techniques and integration approaches
Application for verification and validation. Students should also

• Perform particular V&V techniques. understand the purpose of specifications and how to
interpret them. A one-semester software engineer-

Analysis ing course can provide the necessary background.

* Determine the applicability and likely ef- Additional knowledge that enhances the students'
fectiveness of V&V approaches for par- learning experience is that resulting from exposure

pro ducts oto a variety of types of systems: real-time systems,process. expert systems, etc. This knowledge may help stu-
Synthesis dents appreciate the complexity of V&V issues, as

• Develop an outline for a V&V plan for a well as provide them with additional insights into
project that reflects understanding of the applicability of various V&V approaches.
V&V objectives, integration of tech- Depending upon the level of coverage to be ac-
niques, problem tracking, and assessment corded proof of correctness, some background in
issues. formal logic may be helpful.

Evaluation

e Assess the effectiveness of a V&V plan
with respect to its objectives.

2 SEI-CM-13-1 .1

Introduction to Software Verification and Validation

Module Content

Outline (viii) Failure Analysis
(ix) Concurrency Analysis

I. Introduction (x) Performance Analysis

1. Terminology 3. Proof of Correctness

2. Evolving Nature of Area 4. Simulation and Prototyping

I1. V&V Limitations 5. Requirements Tracing

1. Theoretical Foundations V. Software V&V Planning
2. Impracticality of Testing AD Data 1. Identification of V&V Goals

3. Impracticality of Testing All Paths 2. Selection of V&V Techniques

4. No Absolute Proof of Correctness a. Requirements

LU. The Role of V&V in Software Evolution b. Specifications

1. Types of Products c. Designs

a. Requirements d. Implementations

b. Specifications e. Changes

c. Designs 3. Organizational Responsibilities

d. Implementations a. Development Organization

e. Changes b. Independent Test Organization

2. V&V Objectives c. Software Quality Assurance

a. Correctness d. Independent V&V Contractor
b. Consistency 4. Integrating V&V Approaches

c. Necessity 5. Problem Tracking

d. Sufficiency 6. Tracking Test Activities

e. Performance 7. Assessment

IV. Software V&V Approaches and their
Applicability

1. Software Technical Reviews

2. Software Testing Annotated Outline
a. Levels of Testing

(i) Module Testing I. Introduction

(ii) Integration Testing 1. Terminology

(iii) System Testing The evolution of software that satisfies its user ex-
pectations is a necessary goal of a successful soft-(iv) Regression Testing ware development organization. To achieve this

b. Testing Techniques and their Applicability goaL software engineering practices must be applied
(i) Functional Testing and Analysis throughout the evolution of the software product.

Most of these software engineering practices attempt
(ii) Structural Testing and Analysis to create and modify software in a manner that max-

(iii) Error-Oriented Testing and Analysis inizes the probability of satisfying its user expec-
tations. Other practices, addressed in this module,(iv) Hybrid Approaches actually attempt to insure that the product will meet

(v) Integration Strategies these user expectations. These practices are collec-

(vi) Transaction Flow Analysis tively referred to as software verification and
validation (V&V). The reader is cautioned that ter-

(vii) Stress Analysis minology in this area is often confusing and conflict-

SEI-CM-13-1.1 3

Introduction to Software Verification and Validation

ing. The glossary of this module contains complete pose testing or analysis procedure can be used to
definitions of many of the terms often used to dis- prove program correctness. A proof of this result is ,
cuss V&V practices. This section attempts to clarify contained in his text [Howden87].
terminology as it will be used in the remainder of the
module. 2. Impracticality of Testing All Data

Validation refers to the process of evaluating soft- For most programs, it is impractical to attempt to

ware at the end of its development to insure that it is test the program with all possible inputs, due to a

free from failures and complies with its require- combinatorial explosion [Beizer83, Howden87]. For

ments. A failure is defined as incorrect product be- those inputs selected, a testing oracle is needed to

havior. Often this validation occurs through the util- determine the correctness of the output for a partic-

ization of various testing approaches. Other inter- ular test input [Howden87].

mediate software products may also be validated, 3. Impracticality of Testing All Paths
such as the validation of a requirements description
through the utilization of a prototype. For most programs, it is impractical to attempt to

test all execution paths through the product, due to a
Verification refers to the process of determining combinatorial explosion BeizerB3]. It is also not
whether or not the products of a given phase of a possible to develop an algorithm for generating test
software development process fulfill the require- data for paths in an arbitrary product, due to the
ments established during the previous phase. Soft- inability to determine path feasibility [Adrion86].
ware technical reviews represent one common ap-
proach for verifying various products. For example, 4. No Absolute Proof of Correctness
a specifications review will normally attempt to ver- Howden claims that them is no such thing as an
ify the specifications description against a require- absolute proof of correctness [Howden7]. Instead,
ments description (what Rombach has called "D- absut e proof s ofuen .e.,
requirements" and "C-requirements," respectively he sugests that there ad e proofs of equivalency, i.e.,
[Rombach87]). Proof of correctness is another tech- proofs that one description of a product is equivalentfor eriyingproram to orml spcifca-to another description. Hence, unless a formal spec-
nique for verifying programs to formal specifica- ification can be shown to be correct and, indeed,lin.Verification approaches attempt to identify
iodt fcati or errors, which give rise to failures. reflects exactly the user's expectations, no claim of

productfaults oeproduct correctness can be made [Beizer83, How-

2. Evolving Nature of Area den87].

As the complexity and diversity of software prod- MI. The Role of V&V in Software Evolution
ucts continue to increase, the challenge to develop The evolution of a software product can proceed in
new and more effective V&V strategies continues.
The V&V approaches that were reasonably effective used. The development approach determines the spe-
on small batch-orented products are not sufficient cific intermediate products to be created. For any
for concurrent, distributed, or embedded products. given project, V&V objectives must be identified for
Thus, this area will continue to evolve as new re- en proct coetese
search results emerge in response to new V&V chal-
lenges. 1. Types of Products

11. V&V Limitations To simplify the discussion of V&V objectives, five

The overall objective of software V&V approaches is types of products are considered in this module.
These types are not meant to be a partitioning of all

to insure that the product is free from failures and software documents and will not be rigorously de-
meets its user's expectations. Ther ae iseveral theo- fined. Within each product type, many different
retical and practical limitations that make this objective representational forms are possible. Each represen-
impossible to obtain for many products. tational form determines, to a large extent, the ap-

1. Theoretical Foundations plicability of particular V&V approaches. The in-
tent here is not to identify V&V approaches ap-

Some of the initial theoretical foundations for testing plicable to all products in any form, but instead to
were presented by Goodenough and Gerhart in their describe V&V approaches for representative forms
classic paper [Goodenough75]. This paper provides of products. References are provided to other
definitions for reliability and validity, in an attempt sources that treat particular approaches in depth.
to characterize the properties of a test selection strat-
egy. A mathematical framework for investigating a. Requirements
testing that enables comparisons of the power of The requirements document (Rombach [Rom-
testing methods is described in [GourlayS3]. How- Th re uiremes o ent r m ents"
den claims the most important theoretical result in cr cusome/sroien inqrments"testng nd aalyis i tht nogenral ur-or C-requirements) provides an informal state-program testing and analysis is that no general pur- etothusrsed.

programment of the user's needs.
4 SEI-CM-1 3-1.1

Introduction to Software Verification and Validation

b. Specifications a. Correctness

The specifications document (Rombach: "design- The extent to which the product is fault free.
oriented requirements" or D-requirements) pro-
vides a refinement of the user's needs, which b. Consistency
must be satisfied by the product. There are many The extent to which the product is consistent
approaches for representing specifications, both within itself and with other products.
formal and informal [Berztiss87, Rombach87].

c. Designs
c. Necessity

The extent to which everything in the product isThe product design describes how the specifica- necessary.
tions will be satisfied. Depending upon the devel-
opment approach applied in the project, there may d. Sufficiency
be multiple levels of designs. Numerous possible
design representation approaches are described in The extent to which the product is complete.
Introduction to Software Design [BudgenBS]. e. Performance

d. Implementations The extent to which the product satisfies its per-

"Implementation" normally refers to the source formance requirements.
code for the product. It can, however, refer to V. Software V&V Approaches and their
other implementation-level products, such as de- Applicability
cision tables [Beizer3].

Software V&V activities occur throughout the evolu-
e. Changes tion of the product. There are numerous techniques

Changes describe modifications made to the prod- and tools that may be used in isolation or in combi-
uct. Modifications are normally the result of error nation with each other. In an effort to organize these
corrections or additions of new capabilities to the V&V activities, five broad classifications of ap-
product. proaches are presented. These categories are not meant

to provide a partitioning, since there are some tech-
2. V&V Objectives niques that span categories. Instead, the categories rep-

resent a practical view that reflects the way most of the
The specific V&V objectives for each product must V&V approaches are described in the literature and
be determined on a project-by-project basis. This used in practice. Possible combinations of these ap-
determination wiU be influenced by the criticality of proaches are discussed in the next section.
the product, its constraints, and its complexity. In
general, the objective of the V&V function is to in- 1. Software Technical Reviews
sur that the product satisfies the user needs. Thus,
everything in the product's requirements and specifi- The software technical review process includes tech-
cations must be the target of some V&V activity. In niques such as walk-throughs, inspections, and
order to limit the scope of this module, however, the audits. Most of these approaches involve a group
V&V approaches described will concentrate on the meeting to assess a work product. A comprehensive
functional and performance portions of the require- examination of the technical review process and its
ments and specifications for the product. Ap- effectiveness for software products is presented in
proaches for determining whether a product satisfies The Software Technical Review Process [Collofello-
its requirements and specifications with respect to 88].
safety, portability, usability, maintainability, ser- Software technical reviews can be used to examine
viceability, security, etc., although very important all the products of the software evolution process.
for many systems, will not be addressed here. This In particular, they are especialy applicable and nec-
is consistent with the V&V approaches normally de- Insartiulr the ardespecially i adne-
scribed in the literature. The broader picture of essary for those products not yet in machine-"assurance of software quality" is addressed else- processable form, such as requirements or specifi-
where [Brown87a]. cations written in natural language.

wheSoft[are Testin

Limiting the scope of the V&V activities to func- 2. Software Testing

tionality and performance, five general V&V objec- Software testing is the process of exercising a prod-
tives can be identified [Howden8l, Powel18Oa]. uct to verify that it satisfies specified requirements
These objectives provide a framework within which or to identify differences between expected and ac-
it is possible to determine the applicability of tualresults [IEEE83a].
various V&V approaches and techniques.

SEI-CM-13-1.1 5

Introduction to Software Verification and Validation

a. Levels of Testing * System test plans must be developed
and inspected with the same rigor as

In this section, various levels of testing activities, other elements of the projectr
each with its own specific goals, are ientified
and described. This listing of levels is not mrant * System test progress must be planned
to be complete, but will illustrate the notion of and tracked similary to other ele-
levels of testing with particular goals. Other pos- ments of the project.
sible levels of testing not addressed here include * System tests must be repeatable.
acceptance testing, alpha testing, beta testing, etc.
[Beizer84]. (iv) Regression Testing

(i) Module Testing Regression testing can be defined as the proc-
ess of executing previously defined test cases

Module (or unit) testing is the lowest level of on a modified program to assure that the soft-
testing and involves the testing of a software ware changes have not adversely affected the
module or unit. The goal of module-level test- program's previously existing functions. The
ing is to insure that the component being tested error-prone nature of software modification de-
conforms to its specifications and is ready to be mands that regression testing be performed.
integrated with other components of the prod- Some examples of the types of errors targeted
uct. Module testing is treated in depth in the by regression testing include:
curriculum module Unit Testing and Analysis * Data corruption errors. These er-
(MoreI188]. rors are side effects due to shared

(ii) Integration Testing data.
eInappropriate control sequencing

Integration testing consists of the systematic errors. These errors are side effects
combination and execution of product compo- due to changes in execution se-
nents. Multiple levels of integration testing are quences. An example of this type of
possible with a combination of h e a error is the attempt to remove an item
software components at several different from a queue before it is placed into
levels. The goal of integration testing is to the queue.
insure that the interfaces between the compo- * Resource contention. Examples of

ents are correct and that the product compo- these types of enors are potential
nents combine to execute the product's func- ottlentcs andr deadlocks.
tionality correctly.

* Performance deficiencies. These
(iii) System Testing include timing and storage utilization

System testing is the process of testing the inte- errors.
grated hardware and software system to verify An important regression testing strategy is to
that the system meets its specified require- place a higher priority on testing the older ca-
ments [IEEE83a]. Practical priorities must be pabilities of the product than on testing the new
established to complete this task effectively. capabilities provided by the modification [Pet-
One general priority is that system testing must schenik85]. This insures that capabilities the
concentrate more on .,stem capabilities rather b d poa ill n-
than component capabilities [Beizer84, Mc- tact. This is especially important when we
Cabe85, Petschenik85]. This suggests that sys- consider that a recent study found that half of
tern tests concentrate on insuring the use and all failures detected by users after a modifi-
interaction of functions rather than testing the cation were failures of old capabilities, as a
details of their implementations. Another pri- result of side effects of implementation of new
ority is that testing typical situations is more functionality [Collofello87].
important that testing special cases [Petsche-
nik85, SumB6]. This suggests that test cases be Regression testing strategies are not well-
constructed corresponding to high-probability defined in the literature. They differ from de-
user scenarios. This facilitates early detection velopment tests in that development tests tend
of critical problems that would greatly disrupt to be smaller and diagnostic in nature, whereas
a user. regression tests tend to be long and complex

scenarios testing many capabilities, yet pos-
There are also several key principles to adhere sibly proving unhelpful in isolating a problem,
to during system testing: should one be encountered. Most regression

* System tests should be developed and testing strategies require that some baseline of
performed by a group independent of product tests be rerun. These tests must be
the people who developed the code.

6 SEI-CM-13-1.1

Introduction to Software Verifcation and Validation

supplemented with specific tests for the recent tions to be tested. Some limited success in
modifications. Strategies for testing modifica- automating this process has been obtained for
tions usually involve some son of systematic some more rigorous specification techniques.
execution of the modification and related areas. These results are described in [MoreII88].
At a module level, this may involve retesting
module execution paths traversing the modifi- (ii) Structural Testing and Analysis
cation. At a product level, this activity may Structural testing develops test data based upon
involve retesting functions that execute the the implementation of the product Usually
modified area [Fsher77]. The effectiveness of this testing occurs on source code. However, it
these strategies is highly dependent upon the is possible to do structural testing on other
utilization of test matrices (see below), which representations of the program's logic. Struc-
enable identification of coverage provided by tural testing and analysis techniques include
particular test cases. data flow anomaly detection, data flow

b. Testing Techniques and their Applicability coverage assessment, and various levels of path
. Fcoverage. A classification of structural testing
(i) Functional Testing and Analysis approaches and a description of representative

Functional testing develops test data based techniques is presented in [MorelI88] and in

upon documents specifying the behavior of the Glenford Myers' text [Myers79].
software. The goal of functional testing is to Structural testing and analysis are applicable to
exercise each aspect of the software's specified module testing, integration testing, and regres-
behavior over some subset of its input. How- sion testing. At the system test level, structural
den has developed an integrated approach to testing is normally not applicable, due to the
testing based upon this notion of testing each size of the system to be testd. For example, aaspect of specified behavior [Howdn86, How.-szeothsyemobeetd.orxapa

n87]. A classification of funconal testing paper discussing the analysis of a product con-
ppohe s A claesific ption of nctio tesating sisting of 1.8 million lines of code, suggests

approaches and a description of representative that over 250,000 test cases would be needed to
techniques is presented in [MorelI88]. satisfy coverage criteria [Petschenik85]. At the

Functional testing and analysis techniques are module level, all of the structural techniques
applicable for all levels of testing. However, are applicable. As the level of testing increases
the level of specified behavior to be tested will to the integration level, the focus of the struc-
normally be at a higher level for integration tural techniques is on the area of interface anal-
and system-level testing. Thus, at a module ysis [Howden87]. This interface analysis may
level, it is appropriate to test boundary con- involve module interfaces, as well as interfaces
ditions and low-level functions, such as the to other system components. Structural testing
correct production of a particular type of error and analysis can also be performed on designs
message. At the integration and system level, using manual walk-throughs or design simula-
the types of functions tested are normally those tions [Powel186a].
involving some combination of lower-level Structural testing and analysis techniques are
functions. Testing combinations of functions very effective in detecting failures during the
involves selection of specific sequences of in- module and integration testing levels. Beizer
puts that may reveal sequencing errors due to: reports that path testing catches 50% of all er-

* race conditions rors during module testing and a total of one-

* resource contention third of all of the errors [Beizer84]. Structural
Sdeadlock testing is very cumbersome to perform without

tools, and even with tools requires considerable

* interrupts effort to achieve desirable levels of coverage.

* synchronization issues Since structural testing and analysis techniques
Functional testing and analysis techniques are cannot detect missing functions (nor some
effective in detecting failures during all levels other types of errors), they must be used in

of testing. They must, however, be used in combination with other strategies to improve
combination with other strategies to iraprove failure detection effectiveness [BeizerS4,
failure detection effectiveness [Beizer84, Girgis86, HowdenSO, Selby86].
Girgis86, HowdenSO, SelbySO]. There are numerous automated techniques to

The automation of functional testing tech- support stiuctural testing and analysis. Most of

niques has been hampered by the informality of the automated approaches provide statement
commonly used specification techniques. The and branch coverage. Tools for automating
difficulty li in the identification of the fc- several structural testing techniques are de-

scribed in the papers cited in Morel188].

SEI-CM-13-1.1 7

Introduction to Software Verification and Validation

(iii) Error-Oriented Testing and Analysis * Import/export representation er-

Error-oriented testing a ana s t s rors. This type of error occurs when
arrthose enefocs aparameters are of the same type, but
are those that focus on the presence or absense the meaning of the parameters is dif-
of errors in the programming process. A clas- ferent in the calling and called mod-
sification of these approaches and a description ules. For example, assume module A
of representative techniques is presented in passes a parameter ElapsedTime, of
[AoI'*J881 type real, to module B. Module A

Error-oriented testing and analysis techniques might pass the value as seconds,
are, in general, applicable to all levels of test- while module B is assuming the
ing. Some techniques, such as statistical meth- value is passed as milliseconds.
ods [CurritS, error seeding [Mills83J, and These types of errors ae difficult to
mutation testing [DoeMillo78], ae particulaly detect, although range checks and in-
suited to application during the integration and specions provide some assistance.
system levels of testing. * Parameter utflrzation errors. Dan-

gerous assumptions are often made
(iv) Hybrid Approaches concernig whether a module called

Combinations of the functional, structural, and will alter the information passed to it.
error-oriented techniques have been investi- Alough support for detecting such
gaed and are described in [Mr188]. These error is provided by some compilers,
hybrid approaches involve integration of tech- careful testing and/or inspections
niques, rather than their composition. Hybrid may be necessary to insure that
approaches, particularly those involving struc- values have not been uexpectedly
tural testing, ae normally applicable at the c
module level. * tegration time domain/ computa-

tion errors. A domain error occurs
(v) Integration Strategies when a specific input folows the

Integration consists of the systematic combi- wrong path due to an error in the
nation and analysis of product components. It control flow. A computation error
is assumed that the components being inte- exists when a specific input follows
grated have already been individually ex- the correct path, but an error in some
amined for correctness. This insures that the assignment statement causes the
emphasis of the integration activity is on ex- wrong function to be computed. Al-
amining the interaction of the components though domain and computation er-
[.Bazw , Howden7]. Although integration rors am normally addressed during
strategies are normally discussed for imple- module testing, the concepts apply
mentations, they ae also applicable for inte- across module boundaries. In fact,
grating the components of any product, such as some domain and computation errors
designs. in the integrated program might be

masked during integration testing if
There are several types of errors targeted by the module being integrated is as-
integration testing: sumed to be correct and is treated as

* Import/export range errors This a black box. Examples of these types
type of error occurs when the source of errors and an approach for detect-
of input parameters falls outside of ing them is presented in [Haley84].
the range of their destination. For Measures of integration coverage can be de-
example, assume module A calls fined in an analogous way to those defined by
module B with table pointer X. If A Miller [MIUor771 for module-level coverage.
assumes a maximum table size of 10 Whereas Miller's "Cl" measure requires every
and B assumes a maximum table size statement to be executed, an "II" measure for
of 8, an import/export range error oc- integration coverage might require every mod-
curs. The detection of this type of ule to be invoked during the integration test.
error requires careful boundary-value The "C2" measure, which requires each branch
testing of pameters. to be executed, might have an integration

* Import/export type compatibity coverage counterpart "12" that requires each
erron. This type of error is attri- module to be invoked by all possible callers. W
buted to a mismatch of user-defined An "13" measure might require that each call in
types. These errors ae normally de- every module be exected.
tected by compilers or code inspec-
tions.

8 SEI-CM-13-1.1

= • |A

Introduction to Software Verification and Validation

In addition to module-level coverage, various interfaces to other modules not supporting the
interface coverage measures can be defined. thread, stubs are used. The initial threads to be
An "XO' measure requires each I/O interface tested normally correspond to the "backbone"
be utilized. This implies that passed parame- or "skeleton" of the product under test. (These
ters are referenced, as well as returned, param- terms are also used to refer to this type of inte-
eters. An "XI" measure requires that each out- gration strategy.) The addition of new threads
put variable of a module be set in all possible for the product undergoing integration pro-assignments and that each input variable be ceeds incrementally in a planned fashion. The
used at all possible reference points. use of system verification diagrams for

"threading" requirements is described in
Several strategies for integration testing exist. [Deutscha2].
These strategies may be used independently or
in combination. The primary techniques are (vi) Transaction Flow Analysis
top-down, bottom-up, big-bang, and threaded Transaction flow analysis develops test data to
integration, although terminology used in the execute sequences of tasks that correspond to a
literature vanef Top-down integration at- transaction, where a "transaction" is defined as
tempts to com,.,e incemntally the compo- a unit of work seen from a system user's point
nents of the program, starting with the topmost of view [Bizer8, McCab.8, PtschnikSSJ.
element and simulating lower level elements An ewaml e r anac tion Po tacherating
with stubs. Each stub is then replaced with an An example of a qansaction for an operating
actual program component as the integration system might be a request top a file. The
process proceeds in a top-down fashion. Top- execution of this transaction equires several
down integration is useful for those compo- tasks, such as checking the existence of the
nents of the program with complicated control file, validating permission to read the file, etc.
structues [BeizaerS4]. It also provides visibility The first step of transaction flow analysis is to
into the integration process by demonstrating a identify the transactions. McCabe suggests the
potentially useful product early, drawing of data flow diagrams after integration

Bottom-up integration attempts to combine in- testing to model the logical flow of the system.
crementally components of the program start- Each transaction can then be identified as a
ing with those components that do not invoke path through the data flow diagram, with each

other components. Test drivers must be con- data flow process conesponding to a task that
structed to invoke these components. As must be tested in combination with other tasks

bottom-up integration proceeds, test drivers on the transaction flow [McCaba8e. Informa-

replaced with the actual program components tion about transaction flows may also be ob-

that perform the invocation, and new test tamed from HIPO diagrams, Petri nets, or other
drivers are constructed until the "top" of the similar system-level documentation [BeizerS4].
program is reached. Bottom-up integration is Once the transaction flows have been identi-
consistent with the notion of developing soft- fled, black-box testing techniques can be util-
ware as a series of building blocks. Bottom-up ized to generate test data for selected paths
integration should proceed wherever the driv- through the transaction flow diagram. Some
ing control structure is not too complicated possible guidelines for selecting paths follow:
[Beizer84]. * Test every link/decision in the trans-

Big-bang integration is not an incremental action flow graph.
strategy and involves combining and testing all * Test each loop with a single, double,
modules at once. Except for small programs, typical, maximum, and maximum-
big-bang integration is not a cost-effective less-one number of iterations.
technique because of the difficulty of isolating * Test combinations of paths within
integration testing failures [Beizer4]. ard between transaction flows.

Threaded integration is an incremental tech- e Test that the system does not do
nique that identifies major processing functions things that it is not supposed to do,
that the product is to perform and maps these by watching for unexpected se-
functions to modules implementing them. quences of paths within and between
Each processing function is called a thread. A transaction flows.
collection of related threads is often called a
build. Builds mayserveasabasis fortest Transaction flow analysis is a very effective
management. To test a thread, the group of technique for identifying errors corresponding
modules corresponding to the thread is corn- to interface problems with functional tasks. It
bined. For those modules in the thread with is most applicable to integration and system-

SEI-CM-13-1.1 9

Introduction to Software Verification and Validation

level testing. The technique is also appropriate (viii) Failure Analysis
for addressing completeness and correctness is-
sues for requirements, specifications, and de- Failure analysis is the examination of the
signs. product's reaction to failures of hardware or

software. The product's specifications must be
(vii) Stress Analysis examined to determine precisely which types

Stress analysis involves analyzing the behavior of failures must be analyzed and what the

of the system when its resources are saturated, someimes referred to as "recovery testing"

in order to assess whether or not the system soim f t"].

will continue to satisfy its specifications.

Some examples of errors targeted by stress Failure analysis must be performed during each
tests include: of the product's V&V activities. It is essential

* potential race conditions during requirement and specification V&V ac-

" erros in processing s s tivities that a clear statement of the product's
erors in limitssithrshds o -response to various types of failures be ad-

Serrors in limits, thresholds, or con- dressed in terms that allow analysis. The de-
trols designed to deal with overload sign must also be analyzed to show that the
situations product's reaction to failures satisfies its speci-

* resource contention and depletion fications. The failure analysis of implemen-
For example, one typical stress test for an tatons often occurs during system testing.

operating system would be a program that re- This testing may take the form of simulating
quests as much memory as the system has hardware or software errors or actual introduc-available tion of these types of errors.

The first step in performing a sess analysis is Failure analysis is essential to detecting prod-
identifying those resouces that can and should uct recovery errors. These errors can lead toidentin s t hose reisodetatan andveryslost files, lost data, duplicate transactions, etc.
be stressed. Thnis identification is very system-l Failure analysis techniques can also be corn-

dependent, but often includes resources such as

file space, memory, I/O buffers, processing bined with other approaches during V&V acti-
time, and interrupt handlers. Once these vities to insure that the product's specifications
resources have been identified, test cases must for such attributes as performance, securty,

be designed to stress them. These tests often safety, usability, etc., are met.
require large amounts of data, for which auto- (ix) Concurrency Analysis
mated support in the form of test-case genera-
tors is needed [BeizerB4, Sum86]. Concurrency analysis examines the interaction

of tasks being executed simultaneously within
Although stress analysis is often viewed as one the product to insure that the overall specifi-
of the last tasks to be performed during system cations are being met. Concurrent tasks may
testing, it is most effective if it is applied dur- be executed in parallel or have their execution
ing each of the product's V&V activities, interleaved. Concurrency analysis is some-
Many of the errors detected during a stress times referred to as "background testing"
analysis correspond to serious design flaws. [Beizer84].
For example, a stress analysis of a design may
involve an identification of potential hot- For products with tasks that may execute in
tlenecks that may prevent the product from sat- parallel, concurrency analysis must be per-
isfying its specifications under extreme loads formed during each of the product's V&V acti-
[Beizer84]. vities. During design, concurrency analysis

should be performed to identify such issues as
Stress analysis is a necessary complement to potential contention for resources, deadlock,
the previously described testing and analysis and priorities. A concurrency analysis for im-
techniques for rSource-critical applications. plementations normally takes place during sys-
Whereas the foregoing techniques primarily tem testing. Tests must be designed, executed,
view the product under normal operating con- and analyzed to exploit the parallelism in the
ditions, stress analysis views the product under system and insure that the specifications are
conditions that may not have been anticipated. met.
Stress. analysis techniques can also be coin-
bined with other approaches during V&V acti- (x) Performance Analysis
vities to insure that the product's specifications The goal of performance analysis is to insure
for such attributes as performance, safety, the o d uct meets its specified perfor-
security, etc., are met.

10 SEI-CM-1 3-1.1

Introduction to Software Verification and Validation

mance objectives. These objectives must be 4. Simulation and Prototyping
stated in measurable terms, so far as possible.0 Typical performance objectives relate to re- Simulation and prototyping are techniques for

spouse time and system throughput [Beizer84]. analyzing the expected behavior of a product. There
are many approaches to constructing simulations and

A performance analysis should be applied dur- prototypes that ae well-documented in the litera-
ing each of the product's V&V activities. Dur- ture. For V&V purposes, simulations and proto-
ing requirement and specification V&V activi- types are normally used to analyze requirements and
ties, performance objectives must be analyzed specifications to insure that they reflect the user's
to insure completeness, feasibility, and tes- needs [Bmckett88]. Since they are executable, they
tability. Prototyping, simulation, or other offer additional insight into the completeness and
modeling approaches may be used to insure correctness of these documents. Simulations and
feasibility. For designs, the performance re- prototypes can also be used to analyze predicted
quirements must be allocated to individual product performance, especially for candidate prod-
components. These components can then be uct designs, to insure that they conform to the re-
analyzed to determine if the performance re- quirements. It is important to note that the utili-
quirements can be met. Prototyping, simula- zation of simulation and prototyping as V&V tech-
tion, and other modeling approaches again are niques requires that the simulations and prototypes
techniques applicable to this task. For imple- themselves be correct. Thus, the utilization of these
mentations, a performance analysis can take techniques requires an additional level of V&V acti-
place during each level of testing. Test data vity.
must be carefully constructed to correspond to 5 Requirements Tracing
the scenarios for which the performance re-
quirements were specified. Requirements tracing is a technique for insuring that

3. Proof of Correctness the product, as well as the testing of the product,
addresses each of its requirements. The usual ap-

Proof of correctness is a collection of techniques that proach to performing requirements tracing uses
apply the formality and rigor of mathematics to the matrices. One type of matrix maps requirements to
task of proving the consistency between an algorith- software modules. Construction and analysis of this
mic solution and a rigorous, complete specification matrix can help insure that all requirements are
of the intent of the solution [Adrion86, Powel186b]. properly addressed by the product and that the prod-
This technique is also often referred to as "formal uct does not have any superfluous capabilities
verification." The usual proof technique follows [Powell86b]. System Verification Diagrams are
Floyd's Method of Inductive Assertions or some another way of analyzing requirements/modules
variant [Floyd67, Hantler76]. traceability [Deutech82]. Another type of matrix

maps requirements to test cases. Construction and
Proof of correctness techniques am normally analysis of this matrix can help insure that all re-
presented in the context of verifying an implemen- quirements are properly tested. A third type of
tation against a specification. The techniques are matrix maps requirements to their evaluation ap-
also applicable in verifying the correctness of other proach. The evaluation approaches may consist of
products, as long as they possess a formal represen- various levels of testing, reviews, simulations, etc.
tation [Ambler78, Korelskys7]. The requirements/evaluation matrix insures that all

There are several limitations to proof of correctness requirements will undergo some form of V&V
techniques. One limitation is the dependence of the [Deutsch82, Powel186b]. Requirements tracing can

technique upon a correct formal specification that be applied for all of the products of the software
reflects the user's needs. Current specification ap- evolution process.
proaches cannot always capture these needs in a for- V. Software V&V Planning
mal way, especially when product aspects such as
performance, reliability, quality, etc., are considered The development of a comprehensive V&V plan is es-
[Berztiss87, Rombach87]. Another limitation has to sential to the success of a project. This plan must be
do with the complexity of rigorously specifying the developed early in the project. Depending on the de-
execution behavior of the computing environment. velopment approach followed, multiple levels of test
For large programs, the amount of detail to handle, plans may be developed, corresponding to various
combined with the lack of powerful tools may make levels of V&V activities. Guidelines for the contents
the proof technique impractical [BeizerS3, Koreisky. of system, software, build, and module test plans have
87, Howden87, Pow186b]. been documented in the literature [Deutsch82, DoD87,

Evans84, NBS76, IEEEB3b]. These references also
More information on proof of correctness ap- contain suggestions about how to document other in-
proaches is contained in the curriculum module formation, such as test procedures and test cases. The
Formal Verification of Programs l[Brztisa8]. formulation of -an effective V&V plan requires many

SEI-CM-13-1.1 11

Introduction to Software Verification and Validation

considerations that are defined in the remainder of this d. Implementations
section.

The applicable techniques for accomplishing the
1. Identification of V&V Goals V&V objectives for implementations are techni-

cal reviews, requirements tracing, testing, and
V&V goals must be identified from the requirements proof of correctness. Various code review tech-
and specifications. These goals must address those niques such as walk-throughs and inspections ex-
attributes of the product that correspond to its user ist. At the source-code level, several static anal-
expectations. These goals must be achievable, ysis techniques are available for detecting imple-
taking into account both theoretical an d prtical mentation errors. The requirements tracing acti-
limitations [Evans84, Powel186a, Sum86]. vity is here concerned with tracing requirements

2. Selection of V&V Techniques to source-code modules. The bulk of the V&V
activity for source code consists of testing. Multi-

Once a set of V&V objectives has been identified, ple levels of testing are usually performed.
specific techniques must be selected for each of the Where applicable, proof-of-correctness tech-
project's evolving products. A methodology for the niques may be applied, usually at the module
selection of techniques and tools is presented in leveL
[Powell86b]. More specific guidelines for the selec-
tion of techniques applicable at the unit level of test- e. Changes
ing are presented in [More c88]. A mapping of some Since changes describe modifications to products,
of the approaches presented in Section IV of this the same techniques used for V&V during devel-
module to the products in Section I follows. opment may be applied during modification.

a. Requirements Changes to implementations require regression
testing.

The applicable techniques for accomplishing the
V&V objectives for requirements ate technical re- 3. Organizational Responsibilities
views, prototyping, and simulation. The review The organizational structure of a project is a key
process is often called a System Requirements planning consideration for project managers. An
Review (SRR). Depending upon the represen- important aspect of this structure is delegation of
tation of the requirements, consistency analyzers V&V activities to various organizations [Deutscha2,
may be used to support the SRR. Evans84, Petschenik85, Sum86]. This decision is

b. Specifications often based upon the size, complexity, and criticality
of the product. In this module, four types of organi-

The applicable techniques for accomplishing the zations are addressed. These organizations reflect
V&V objectives for specifications are technical typical strategies for partitioning tasks to achieve
reviews, requirements tracing, prototyping, and V&V goals for the product. It is, of course, possible
simulation. The specifications review is some- to delegate these V&V activities in many other
times combined with a review of the product's ways.
high-level design. The requirements must be
traced to the specifications. a. Development Organization

c. Designs The development organization has responsibility
for participating in technical reviews for all of the

The applicable techniques for accomplishing the evolution products. These reviews must insure
V&V objectives for designs are technical reviews, that the requirements can be traced throughout the
requirements tracing, prototyping, simulation, and class of products. The development organization
proof of correctness. High-level designs that cor- may also construct prototypes and simulations.
respond to an architectural view of the product For code, the development organization has re-
are often reviewed in a Preliminary Design Re- sponsibility for preparing and executing test plans
view. Detailed designs are addressed by a Criti- for unit and integration levels of testing. In some
cal Design Review. Depending upon the repre- environments, this is referred to as Preliminary
sentation of the design, static analyzers may be Qualification Testing. The development organi-
used to assist these review processes. Require- zation also constructs any applicable proofs of
ments must be traced to modules in the architec- correctness at the module level.
tural design; matrices can be used to facilitate this
process [PoweII86b. Prototyping and simulation b. Independent Test Organization
can be used to assess feasibility and adherence to An independent test organization (ITO) may be
performance requirements. Proofs of correctness, established, due to the magnitude of the testing
where applicable, are normally performed at the effort or the need for objectivity. An ITO enables
detailed design level [Dyer871. the preparation for test activities to occur in paral-

12 SEI-CM-13-1.1

Introduction to Software Verification and Validation

lel with those of development. The ITO normally approach is very dependent upon the nature of the
participates in all of the product's technical re- product and the process used to develop it. Tradi-
views and monitors the preliminary qualification tional integrated V&V approaches have followed the
testing effort. The primary responsibility of the "waterfall model" with various V&V functions al-
ITO is the preparation and execution of the located to the project's development phases
product's system test plan. This is sometimes [Deutsch82, DoD87, Evans84, Powel186a]. Alter-
referred to as the Formal Qualification Test. The natives to this approach exist, such as the Cleanroom
plan for this must contain the equivalent of a software development process developed by IBM.
requirements/evaluation matrix that defines the This approach is based on a software development
V&V approach to be applied for each requirement process that produces incremental product releases,
[Deutsch82]. If the product must be integrated each of which undergoes a combination of formal
with other products, this integration activity is verification and statistical testing techniques
normally the responsibility of the ITO as well. [Cunit86, Dyer87]. Regardless of the approach se-

lected, V&V progress must be tracked. Require-
c. Software Quality Assurance ments/evaluation matrices play a key role in this

Although software quality assurance may exist as tracking by providing a means of insuring that each
a separate organization, the intent here is to iden- requirement of the product is addressed [Powel186b,
tify some activities for assuring software quality Sum86].
that may be distributed using any of a number of 5. Problem Tracking
organizational structures [Brown87]. Evaluations
are the primary avenue for assuring software Other critical aspects of a software V&V plan are
quality. Some typical types of evaluations to be developing a mechanism for documenting problems
performed where appropriate throughout the encountered during the V&V effort, routing prob-
product life cycle are identified below. Other lems identified to appropriate individuals for correc-
types can be found in Assurance of Software tion, and insuring that the corrections have been per-
Quality [Brown87]. Evaluation types: formed satisfactorily. Typical information to be col-

* internal consistency of product lected includes:

* understandability of product e when the problem occurred

* traceability to indicated documents * where the problem occurred

" consistency with indicated documents * state of the system before occurrence

* appropriate allocation of sizing, timing * evidence of the problem
resources * actions or inputs that appear to have led to

" adequate test coverage of requirements occurrence

" consistency between data definitions *description of how the system should
and use work, reference to relevant requirements

* adequacy of test cases and test proce- - priority for solving problem
dures * technical contact for additional informa-

* completeness of testing tion

* completeness of regression testing Problem tracking is an aspect of configuration man-
agement that is addressed in detail in the curriculum

d. Independent V&V Contractor module Software Configuration Management (To-
mayko87]. A practical application of problem track-

An independent V&V contractor may sometimes ing for operating system testing is presented in
be used to insure independent objectivity and [SumS6].
evaluation for the customer. The scope of activi-
ties for this contractor varies, including any or all 6. Tracking Test Activities
of the activities addressed for the Independent The software V&V plans must provide a mechanism
Test and Software Quality Assurance organiza- for trac ng the testing effort. Data must be col-tions [Deutachs]. frtakn h etn fot aams cl

lected that enable project management to assess both
4. Integrating V&V Approaches the quality and the cost of testing activities. Typical

data to collect include:
Once a set of V&V objectives has been identified,

an overall integrated V&V approach must be deter- * number of tests executed
mined. This approach involves integration of tech- e number of tests remaining
niques applicable to the various life cycle phases as 9 time used
well as delegation of these tasks among the project's * resources used
organizations. The planning of this integrated V&V

SEI-CM-13-1.1 13

Introduction to Software Verification and Validation

*number of problems found and the time combined and tested until the entire system has
spent finding them been integrated [IEEE83a].

These data can then be used to track actual test
progress against scheduled progress. The tracking proof of correctness
information is also important for future test schedul- A formal technique to prove mathematically that
ing. a program satisfies its specifications [IEEE83a].

7. Assessment

It is important that the software V&V plan provide regresin testing

for the ability to collect data that can be used to Selective retesting to detect faults introduced

assess both the product and the techniques used to during modification of a system or system com-
develop it Often this involves careful collection of ponenL Retesting to verify that modifications
error and failure data, as well as analysis and classi- have not caused unintended adverse effects and
fication of these data. More information on assess- that the modified system or system component
ment approaches and the data needed to perform still meets its specified requirements [IEEE83a].
them is contained in [Brown87].

software technical review process
A critical evaluation of an object. Walk-
throughs, inspections and audits can be viewed

Glossary as forms of technical reviews [Collofello88].

acceptance testing system testing

The testing done to enable a customer to deter- The process of testing an integrated hardware

mine whether or not to accept a system and software system to verify that the system

[IEEE83a]. meets its specified requirements [IEEE83a].

correctness testing o

The extent to which software is free from faults. The process of exercising a system or system
The extent to which software meets user expec- component by manual or automated means to
tations [IEEE83a]. verify that it satisfies specified requirements or

to identify differences between expected and ac-
coverage tual results [IEEE83a].

Used in conjunction with a software feature or unit
characteristic, the degree to which that feature or
characteristic is tested or analyzed. Examples Code that is meaningful to treat as a whole. It
include input domain coverage, statement may be as small as a single statement or as large
coverage, branch coverage, and path coverage
(MorelH88]. unit testing

error The testing of a software unit.
Human action that results in software containing validation
a fault [IEEE83a].

The process of evaluating software at the end of
failure its development process to ensure compliance

Incorrect behavior of a program induced by a with its requirements [IEEE83a]. Other products
fault [Howden87]. besides code can be validated, such as require-

ments and designs, through the use of prototypes
fault or simulation [Howden87].

An accidental condition that causes a product to verification
fail. [IEEE83a]. The process of determining whether or not the

integration testing products of a given phase of a software devel-

An orderly progression of testing in which soft- opment process fulfill the requirements estab-
ardelments, arwresso ften or w ot arelished during the previous phase [IEEE83a. Of-

ware elements, hardware elements, or both are

14 SEI-CM-1 3-1.1

Introduction to Software Verification and Vaidato

ten equated with proof of correctness, which. proves equivalency of programs to formal speci-
fications [Howden87].

SEI-CM-13-1 .1 15

Introduction to Software Verification and Validation

Teaching Considerations

Suggested Schedules Exercises and Worked Examples

The nature of this module lends itself to several pos- Any course on software V&V requires worked ex-
sible uses, depending upon the topics of interest and amples and exercises illustrating the techniques
the depth of coverage desired. being taught. Some suggestions can be found in The

Software Technical Review Process [Collofello88],Semester Course. This module can provide a Unit Testing and Analysis [Morel188], and Formal

framework for developing a graduate one-semester Verication of Programs [Breiss88].

course on software verification and validation. The

outline of the module can be used to structure the A useful exercise for students taking an introductory
syllabus for the course. The amount of time to be V&V course based on this module is the develop-
spent on each topic will, of course, depend upon the ment of an integrated V&V plan for a projecL The
background and interests of the students and instruc- instructor can assign teams of students to projects.
tor. It is recommended, however, that each V&V Projects can address different application areas, pos-
approach in the outline be addressed in the course, to sibly using different development approaches. For
insure that the students have sufficient breadth to un- example, one team might address V&V issues for an
derstand the context for applying each approach and expert system; another team might be concerned
for combining approaches where appropriate. with a robotics project developed with incremental

product releases. Presentations at the end of the
Overview Lectures. This module can also be used course can further enhance the learning experience
as a basis for an overview of the software V&V area, for all involved.
Such an overview could be presented in 2 to 3 one-
hour lectures. The overview could serve as the first
week's lecture material for a course developed from
one of the more advanced curriculum modules in
this area, such as Unit Testing and Analysis. This
overview would also be valuable for management in
an industrial environment.

16 SEI-CM-1 3-1.1

Introduction to Software Verification and Validation

*Bibliography

Adrion86 Brackett88
Adrion, W. R., M. A. Branstad, and J. C. Bracken, J. W. Software Requirements. Curriculum
Cheriavsky. "Validation, Verification and Testing of Module SEI-CM-19-1.0, Software Engineering Insti-
Computer Software." In Software Validation, Verifi- tute, Carnegie Mellon University, Pittsburgh, Pa.,
cation, Testing, and Documentation, S. J. Andriole, Dec. 1988.
ed. Princeton, N. J.: Petrocelli, 1986, 81-123.

This survey describes and categorizes V&V tech- Brown87
niques applicable throughout the product's devel- Brown, B. J. Assurance of Software Quality. Curric-
opment cycle. Various testing techniques, as well ulum Module SEI-CM-7-1.1, Software Engineering
as technical reviews and proof of correctness ap- Institute, Carnegie Mellon University, Pittsburgh,
proaches, are addressed. Pa., July 1987.

Ambler78 Budgen88
Ambler, A. L., et al. "Gypsy: A Language for Budgen, D. Introduction to Software Design. Cur-
Specification and Implementation of Verifiable riculum Module SEI-CM-2-2.0, Software Engineer-
Programs." Proc. ACM Conf. on Language Design ing Institute, Carnegie Mellon University, Pitts-
for Reliable Software. New York: ACM, 1978, burgh, Pa., Nov. 1988.
1-10.

Collofello87
Beizer83 Collofello, 3. S. and J. Buck. "The Need for Soft-. Beizer, B. Software Testing Techniques. New York: ware Quality Assurance during the Maintenance
Van Nostrand, 1983. Phase." IEEE Software 4, 5 (Sept. 1987), 46-51.

This text provides comprehensive coverage of sev- This paper describes the need for thorough regres-
eral testing techniques, with an emphasis on struc- sion testing during software maintenance. Results
tural approaches. Information is also presented on of an extensive analysis of failures detected in a
database-driven test design and state-based testing. new release of a large system are presented. The
The text collects practical approaches and demon- results suggest strongly that existing features must
strates them well with examples. undergo careful regression testing, since almost half

of all failures in the new release occurred on exist-
Belzer84 ing features of the system that worked fine before
Beizer, B. Software System Testing and Quality the modification.
Assurance. New York: Van Nostrand, 1984.

Collofello88
This text begins with an introduction to general test- Collofello, J. S. The Software Technical Review
ing techniques and then proceeds to integration and Process. Curriculum Module SEI-CM-3-1.5, Soft-
system testing approaches. Techniques for design- Poes urclmMdl E-M315 ot
sysersting arecoaes cniuestfresigan- ware Engineering Institute, Carnegie Mellon Univer-ng security, recovery, confifgurationl, stress, aniyditsugP.,Jn 98
performance tests are presented in detail. sity, Pittsburgh, Pa., June 1988.

Berztlss87 Currlt86
Berztiss, A. Formal Specification of Software. Cur- Currit, P. A., M. Dyer, and H. D. Mills. "Certifying
riculum Module SEI-CM-8-1.0, Software Engineer- the Reliability of Software." IEEE Trans. Software
ing Institute, Carnegie Mellon University, Pitts- Eng. SE-12, 1 (Jan. 1986), 3-11.
burgh, Pa., Oct. 1987. This paper describes a statistical approach to

reliability projection. It presents a procedure for
Berztiss88 estimating the mean-time-to-failure for software
Berztiss, A., M. A. Ardis. Formal Verification of systems. The approach is based on selecting test
Programs. Curriculum Module SEI-CM-20-1.0, cases that reflect statistical samples of user opera-
Software Engineering Institute, Carnegie Mellon tions. This paper provides another perspective onSoftr Enineeburig, Insa , c arngi Meln testing that should be addressed after the studentsUniversity, Pittsburgh, Pa., Dec. 1988. have studied both structural and functional testing

SEI-CM-13-1.1 17

Introduction to Software Verification and Validation

methods. The paper also is targeted to an incremen- This text is written for managers to provide them
tal development methodology that provides a nice with a framework for managing software testing.
contrast to the typical waterfall testing approaches. Test planning is emphasized and described for the

software development process. Other managerial

DeMIIIo78 issues, such as how to motivate the work force, are

DeMillo, R. A., R. 1. Lipton and F. G. Sayward. also presented. The text concludes with a fictional

"Hints on Test Data Selection: Help for the Prac- account of what can go wrong on a project if the

ticing Programmer." Computer 11 (April 1978). test planning is poorly done.

This paper is also included in [Miller8l]. It intro- Fisher77
duces the idea of mutation testing. It can be used as Fisher, K. F. "A Test Case Selection Method for the
an example of error-oriented testing and analysis. Validation of Software Maintenance Modifications."
Significant other work in the mutation analysis area Proc. IEEE COMPSAC. Long Beach, Calif.: IEEE
at a more advanced level can be found in other Compr Society Press, 1977.
papers by DeMillo.

This paper describes a strategy for performing
Deutsch82 regression testing of a software component. The

Deutsch, M. S. Software Verification and Valida- strategy is based upon retesting execution paths

tion: Realistic Project Approaches. Englewood through the changed area of the component. Other

Cliffs, N. J.: Prentice-Hall, 1982. types of possible regression testing strategies are
also described.

This text presents an integrated approach to soft-
ware V&V. A systematic approach to software in- Floyd67
tegration utilizing threads is also presented in detail. Floyd, R. W. "Assigning Meanings to Programs."
Example outlines for test plans at each level of test- Proc. Symp Applied Math. Providence, R. I.: Ameri-
ing are also provided. The book also contains chap- can Math. Society, 1967, 19-32.
ters addressing organizational issues such as the
role of configuration management, software quality A classic paper in the program verification area that
assurance, and independent test organizations. is heavily referenced.

DoD87 Girgis86
DoD. Military Standard for Defense System Soft- Girgis, M. R. and M. R. Woodward. "An Experi-
ware Development. DOD-STD-2167A, U. S. De- mental Comparison of the Error Exposing Ability of
partment of Defense, 1987. Program Testing Criteria." Proc. Workshop on Soft-

Included in this standard are descriptions of the ware Testing. Washington, D. C.: Computer

V&V requirements that must be followed for de- Society Press, 1986, 64-73.

fense system software development. This standard This paper describes an experiment in which weak
follows a waterfall model and can thus provide a mutation testing, data flow testing, and control flow
framework for integrating V&V approaches. testing were compared in terms of their failure de-

tection ability for FORTRAN programs. The paper
Dyer87 can be used to reinforce the idea that testing strat-
Dyer, M. "A Formal Approach to Software Error egies should be thought of as complementary rather
Removal." J. Syst. and Software 7, 2 (June 1987), than competing methods.

109-114.

This paper describes the Cleanroom software devel- Goodenough75

opment process developed by the IBM Federal Sys- Goodenough, J. B. and S. L. Gerhart. oward a

tems Division. This process replaces traitional Theory of Test Data Selection." IEEE Trans. Soft-

testing models with a new process that combines ware Eng. SE-1, 2 (June 1975), 156-173.
program verification techniques with statistical test- This paper is also included in [Miller8l]. The paper
ing. Data are presented that indicate that the meth- examines the theoretical and practical role of testing
od may be more effective than structural unit test- in sofware development. Definitions for reliability
ing. and validity are presented, in an attempt to charac-

terize the properties of a test selection strategy.Evmns84 '

Evans, M. W. Productive Software Test
Management. New York: John Wiley, 1984.

18 SEI-CM-1 3-1.1

Introduction to Software Verification and Validation

Gourlay83 Howden86
Gourlay, J. S. "A Mathematical Framework for the Howden, W. E. "A Functional Approach to Program
Investigation of Testing." IEEE Trans. Software Testing and Analysis." IEEE Trans. Software Eng.
Eng. SE-9, 6 (Nov. 1983), 686-709. SE-12, 10 (Oct. 1986), 997-1005.

This paper develops a mathematical framework for This paper provides a summary of some of the
testing that enables comparisons of the power of major research contributions contained in Howden's
testing methods. This paper should be read after the text [Howden87]. An integrated approach to testing
Goodenough and Gerhart paper, since it attempts to combining both static and dynamic analysis meth-
build upon and clarify some of their results. ods is introduced, along with a theoretical foun-

dation for proving both its effectiveness and effi-
Haley84 ciency. This paper should be read after both static
Haley, A. and S. Zweben. "Development and Appli- and dynamic analysis test methods have been
cation of a White Box Approach to Integration studied.

Testing." J. Syst. and Software 4, 4 (Nov. 1984), Howden87
309-315.

Howden, W. E. Functional Program Testing and
This paper describes how the concept of domain Analysis. New York: McGraw-Hill, 1987.
and computation errors can be applied during inte-
gration testing. Some examples of these types of This text expands upon the author's paper
errors and approaches for detecting them are [Howden86], providing details and proofs of his in-
presented. tegrated approach to testing.

Hantler76 IEEE83a
Hanler S. L. and J. C. King. "An Introduction to IEEE. Standard Glossary of Software Engineering
Proving the Correctness of Programs." ACM Corn- Terminology. ANSI/IEEEStd729-1983, Institute of
puting Surveys 8, 3 (Sept. 1976), 331-53. Electrical and Electronics Engineers, 1983.

This paper is also included in [Miller8l]. The paper IEEE8b
presents, in an introductory fashion, a technique for
showing the correctness of a program. The paper IEEE. Standard for Software Test Documentation.
also helps define the relationship between proofs of ANSI/IEEEStd829-1983, Institute of Electrical and
correctness and symbolic execution. Electronics Engineers, 1983.

Howden8O Korelsky87
Howden, W. E. "Applicability of Software Valida- Korelsky, T., M. Shoji, R. A. Platek and
tion Techniques to Scientific Programs." ACM C. Shilepsky. Verification Methodology Evaluation.
Trans. Prog. Lang. and Syst. 2, 3 (July 1980), RADC-TR-86-239, Rome Air Development Center,
307-320. 1987.

This paper is also included in [Miller81]. It describes
an analysis of a collection of programs whose faults McCabe85
were known, in order to identify which testing tech- McCabe, T. 1. and G. G. Schulmeyer. "System Test-
niques would have detected those faults. The paper ing Aided by Structured Analysis: A Practical
provides a good example of error analysis, as weU Experience." IEEE Trans. Software Eng. SE-II, 9
as motivation for integrated V&V approaches. (Sept. 1985), 917-921.

This paper extends the ideas of Structred Analysis
Howden81 to system acceptance testing. Data flow diagrams
Howden, W. E. "A Survey of Static Analysis are used to form the basis for integrating modules
Methods." In Tutorial: Software Testing and Vali- together to form transaction flows. A test
dation Techniques, E. Miller and W. E. Howden, traceability matrix is then defined, which maps test
eds. Los Alamitos, Calif.: IEEE Computer Society cases to transaction flows and their corresponding
Press, 1981, 101-115. functionality.

This survey describes a variety of static analysis Mlller77
~techniques applicable to requirements, designs, andtechiqus apliabl toreqireent, ~Miller, E. F., Jr. "Program Testing: Art Meets

code. Formal and informal analysis techniques are
presented. Symbolic execution is also introduced, Theory." Computer 10, 7 (July 1977), 42-51.
along with some examples.

SEI-CM-13-1.1 19

Introduction to Software Verification and Validation

This paper describes some of the history of software Verification, Testing and Documentation, S. J.
testing and how the field continues to evolve. Ex- Andriole, ed. Princeton, N. J.: Petrocelli, 1986,
isting test methodologies are briefly addressed. A 3-77. Also available from National Bureau of Stan-
hierarchy of testing measures is also presented. dards, as NBS Publication 500-98, Nov. 1982.

Miler8i This paper begins with an overview of a waterfall
E. Miller and W. E. Howden, eds. Tutorial: Soft- model for software development. Within thewre M sti and . liE.tHodn, ecs.iTutoria: Sd Emodel, V&V activities are identified and described
ware Testing and Validation Techniques, 2nd Ed. for each development phase. A framework for inte-
Los Alamitos, Calif.: IEEE Computer Society Press, grating V&V techniques is then presented. The
1981. paper concludes with an in-depth analysis of V&V

planning issues, including several example plans for
M11ls83 various levels of V&V technology.
Mills, H. D. Software Productivity. Boston: Little,
Brown, 1983. Powel186b

Powell, P. B. "Software Validation, Verification and
Morel188 Testing Technique and Tool Reference Guide." In
Morell, L. J. Unit Testing and Analysis. Curriculum Software Validation, Verification, Testing, and
Module SEI-CM-9-1.1, Software Engineering Insti- Documentation, S. J. Andriole, ed. Princeton, N. J.:
tute, Carnegie Mellon University, Pittsburgh, Pa., Petrocelli, 1986, 189-310.
Dec. 1988. This paper describes thirty techniques and tools for

performing V&V activities. Each description in-
Myers79 cludes the basic features of the technique or tool, an
Myers, G. J. The Art of Software Testing. New York: example, an assessment of its applicability, and the
John Wiley, 1979. tim required to learn it. Program verification is

described in detail, along with various review and
A well written text that carefully explains practical testing approaches. Requirements tracing is also
approaches to testing modules utilizing functional presented as an important V&V technique.
and structural techniques.

Rombach87
NBS76 Rombach, H. D. Software Specification: A
NBS. Guidelines for Documentation of Computer Framework. Curriculum Module SEI-CM-11-1.0,
Programs and Automated Data Systems. Federal In- Software Engineering Institute, Carnegie Mellon
formation Processing Standards Publication FIPS University, Pittsburgh, Pa., Oct. 1987.
PUB 38, National Bureau of Standards, Feb. 1976.

Petschenlk85 Selby86
Selby, R. W. "Combining Software Testing Strate-

Petschenrk, N. H. "Practical Priorities in System gies: An Empirical Evaluation." Proc. Workshop on
Testing." IEEE Software 2, 5 (Sept. 1985), 18-23. Software Testing. Washington, D. C.: IEEE Corn-

This paper describes the system testing priorities puter Society Press, 1986, 82-90.
followed on a large Bell Communications Research This paper presents the results of a study comparing
product. The product continuously undergoes new code reading, func*tonal testing, and structural test-
releases. The system testing methodology is based ing methods, along with their six pairwise combina-
on a set of priority rules. The first rule suggests that tions. The results suggest that combined ap-
testing the system's capabilities is more important proaches are more effective than individual ap-
than testing its components. The second rule tates proaches. This paper should be read by students
that testing old capabilities is move important than after the individual testing methods have beentesting new capabilities. The third rule implies that studied, to reinforce the idea that various conibina-
testing typical situations is more important than tions of techniques must be employed to detect
testing boundary value cases. The rationale for faults.
these rules is developed in the paper, along with
discussion of practical experiences. Sum86

Powel18fis Sum, R. N., R. H. Campbell, and W. J. Kubitz. "An
Powell, P. B. "Planning for Software Validation, Approach to Operating System Testing." J. Syst. and
Verification, and Testing." In Software Validation, Software 6, 3 (Aug. 1986), 273-284.

20 SEI-CM-13-1.1

Introduction to Software Verifcation and Validation

This paper describes a practical approach that was. used to perform the system testing of an operating
system. A hwamwotk for systematic testing is de-
scribed that can be generalized to other tyes of
systems. Data are also pmeemed suggesting the ef-
fiectiveness of the approach. Sample test definition
forms, test matrices, and problem tracking memos
are included in the appendix.

Tomayko87
Tomayko, J. E. Software Configuration Manage-
ment. Curriculum Module SEI-CM-4-1.3, Software
Engineeing Institute, Carnegie Mellon University,
Pittsburgh, Pit., July 1987.

SEI-CM-13-1 .1 21

The Software Engineering Institute (SEI) is a federally funded research and development center. operated by Carnegie
Mellon University under contract with the United States Department of Defense.OThe SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area. and is intended to be

0used by an instructor in designing a course. A support mnaterials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEt, by Carnegie Mellon University. or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules. support materials, and educational materials is
granted. withoul fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage. and that ad copies and derivative works Cite the original document by name. author's name, and document
number and give notc that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mal can be sent to education~seixcmu.edu on the Internet.

Curriculum Modules (0 Support Materials availabl) Educational Materials

CM-1 (superseded by CM-191 EM-I Sotare Maintenance Exrciues lor aSoftware
CM-2 Itoduction to Software Design Eninteriin Projct Course
CM-S The Sollware Terltnical Amewa Prms EM-2 APSE Ilyacdve Monito: An Ai~act for Software
CM-4 Sollwaro vrgraton Mngment' Elgiiifring Educagan

CM- Inormtio PrtecionEM-S Readin Computar Progrars: Instrudors Guide aid
CM.4 software Sal"exrcse. CM-7 Assurance of Software Ouality
CbM4 Formal Specifcetion of Software'
CM4 Unit Testing and Analysis
CM-10 Models of Softwaret Evolution: tile Cycle and Process
CM-t I Software Specifications: A Framework
CM-12 SoftwareMeorins
CM-la hIh'oe~c o Software Verilcation and Validation
CM-14 Itelectual Property Protecton fow Software
CM-IS Software Development aid Licensing Contracts
CM-la Software Development Using VOM
CM-17 User Intorac Deelpmenr
CM-I8 (superseded by CM-231
CM-19 Soft1wre Requsements
CM-20 Formal Verification of Programs
CM-2l Software Project Management
CM-22 Software Design Methods for Real-Tnme Systems'
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

P -.ramig
CM-26 Understanding Program Dependencies

